显微镜恒温台15年专业制造商
服务热线
0755-82876856
公司推出的超精准可调节温度控制模块是一款用于光学显微镜的精密温度控制模块,兼容市面上绝大多数的商用显微镜和物镜。该模块特有的智能基底将透明加热元件与高灵敏度温度探头相结合,实现了在高清成像的同时快速和精确地调节温度,加热速率可达100℃/s,最高温度可达200℃,稳定性0.01℃。
该模块尤其适用于生命科学和材料科学中的温度敏感过程研究,如活细胞高分辨成像、DNA生物学、热休克蛋白、相分离等。
高温热台组成部分
1.控制器
控制单元作为用户与样品温度控制之间的载体,可以实时显示当前的温度,并且可以通过旋钮轻松地调节温度。一个USB接口授予远程控制、同步系统参数、图像采集功能。具有四种加热模式。
2.智能玻璃基板
智能基板取代了传统的盖玻片。集成的加热元件与高灵敏度的温度传感器可以在不影响成像质量的情况下快速、精确地控制视场内的温度。
1、高强度强化玻璃:室温~150℃
2、加热板尺寸:128×86×6mm
3、玻璃尺寸:80×59mm
4、玻璃厚度:0.7mm
5、仪器电源电压: 220V±10%,AC45-60HZ
6、恒温体工作电压: 直流 24V
7、最大功耗: 50W
8、系统工作环境温度: 自适应室温工作
9、控制仪器尺寸: 170×160×113(mm)
10、载物台最大载荷:300克
11、工作方式: 连续
显微镜适配器与加热区域隔热,即使在200°C的样品温度下也能保持在室温。
温度稳定性高:0.01℃
在长时间(小时到天)和短时间(秒到分钟)下的温度稳定性可至0.01°C (RMS)。通过样品内部的直接温度反馈,检测和补偿空气流动、流体交换等引起的外部温度变化。
温控范围广:RT-200℃
根据用户的实验需要,实验温度范围可以由RT-100℃(标准版)扩展至RT-200℃(扩展版)。标准版与油浸物镜兼容,而扩展版可以与空气物镜兼容。
优越的成像质量
在20°C到100°C的温度范围内,空气物镜视野中的图像没有变化。
在20°C到80°C的温度范围内,油浸物镜和空气物镜中图像质量横向方向上没有变化。
快速且可靠,用于油浸物镜
可以让用户控制视场内的温度,而不受显微镜物镜类型或物镜温度的影响。该系统被设计为独立的单元,不需要对光学设置(如物镜加热器)进行任何额外的修改,以避免在视野中出现温度下降。此外,智能基板的独特设计确保了物镜的性能即使在更高的温度下也不会改变。
设有四种加热模式,可根据用户需求进行不同的实验。
自动模式(AUTO):通过PID控制回路,以保持样品在所需的温度。
直接模式(DIRECT):直接控制加热功率,闭环控制,快速加热。
脉冲模式(SHOCK):类似于定时的DIRECT模式,规定时间内多次对样品进行加热。
自定义模式(PROFILE):自定义设置目标加热率、冷却率和保持时间。适用于温度变化相关的化学反应,如:相变。
设备兼容性高
配有专用的显微镜适配器,可以兼容市面上绝大多数商业显微镜,同时兼容多种成像技术:
全内反射显微镜 (TIRM)
共聚焦显微镜
干涉散射显微镜(iSCAT)
原子力显微镜(AFM)
超分辨显微镜(SIM, STORM, PALM, PAINT, STED)
宽场显微镜
超分辨活细胞成像
DNA生物学
微流控
相变
神经生物学
原子力显微镜
1.活细胞成像
活细胞对温度的变化非常敏感,传统的加热仪一般采用大型的环境箱,温度测量距离样品很远,温度变化非常缓慢,显微镜需要几个小时才能达到热平衡,缓慢的平衡也意味着与温度相关的样品漂移更显著。同时,显微镜载物台、框架和物镜可以充当散热器,抵消样品加热系统的作用。在这种静态加热室的情况下,物镜正下方的区域通常比试样的其余部分低5°C。
能够实现直接对局部样品加热,抵消由灌注系统或室温变化引入的任何外部干扰并将其与环境热分离,避免对物镜等温度敏感设备产生影响。这种局部加热和温度感测具备了快速、精确的温度变化,并且加热速率高达100°C/s,精度高于0.1°C,可以像PCR热循环仪一样编程任意温度曲线。能够确保在成像过程中的精准温度控制,并且支持高分辨显微镜,非常适合研究温度敏感细胞行为过程。
2.嗜热菌成像
Institute Fresnel的Guillaume Baffou实验室使用在空间限制下,保持嗜热菌处于60°C和70°C下并进行成像。他们发现适用于大肠杆菌的培养条件不一定适用于其他非模式生物,大多数好氧菌在需要比空间限制环境下更多的氧气才能成功生长。
细菌悬浮液滴在样品池内后,放置盖玻片覆盖住样品池的一半,即可同时观察细菌在开放环境和空间限制下的生长。结果表明,大肠杆菌和罗伊氏乳杆菌两种兼性厌氧菌在开放环境和空间限制下均能够正常生长,且倍增时间相似;而嗜热脂肪芽孢杆菌和嗜热栖热菌两种好氧菌在空间限制下生长明显受限。实验过程中,用于保持不同种类细菌在恒温状态下生长。
3.酵母减数分裂过程中的染色体分离
马克斯普朗克研究所的Wolfgang Zachariae实验室使用含温敏等位基因的酵母研究减数分裂过程中的染色体分离。可在选择的时间点迅速控温以达到实验要求的温度,表达温敏型cdc20-3的酵母在升温后由于cdc20-3失活,减数分裂过程被阻断;降温后cdc20-3被激活,减数分裂继续。
表达野生型CDC20(CDC20-mAR ama1)和温敏型cdc20-3(cdc20ts-mAR ama1)的酵母。t = 50 min时,温度升至37°C,温敏型菌株被阻断在减数分裂中期II;t = 120 min时,温度降为25℃,温敏型菌株进入后期II。上图,通过固定细胞的免疫荧光显微定量细胞特征(每个时间点n = 100);下图,减数分裂II期细胞中DNA,纺锤体和Pds1-myc18的染色。
4.DNA折纸
慕尼黑工业大学的Hendrik Dietz实验室利用DNA折纸构建了一种大分子运输系统。用于单分子TIRF成像时的精确温度控制。单分子TIRF等高分辨率成像技术容易受温度变化导致的热漂移影响,能够保证温度稳定保持在设定值,仅有0.01℃波动,进而提高成像准确度。
图a:左:聚合反应和微丝端部封顶的示意图;右:琼脂糖凝胶的激光扫描图像。
图b:封顶的微丝的负染透射电镜成像。
图c:左:聚合微丝的负染透射电子显微镜成像。右:聚合微丝的TIRF成像,分子活塞(绿色)位于微丝(红色)内部。
图d:TIRF电影中取自单帧的典型序列,反映了活塞沿着丝状物的移动。底部:整个电影(6000帧,帧速率= 10 / s)的平均图像的标准偏差,说明活塞已经沿着这条约3μm长的丝状物行程全长移动。
5.纳米颗粒的iSCAT成像
马克斯普朗克光学科学研究所的Vahid Sandoghdar实验室致力于研究干涉散射(iSCAT)显微技术。用于表征金纳米颗粒扩散系数与温度的关系。使用调整30 nm的金纳米颗粒的温度并检测扩散系数,测量结果与使用金纳米颗粒的流体力学直径(实线)计算出的扩散系数基本一致。
金纳米颗粒直径与扩散系数的关系。小图:30 nm金纳米颗粒在不同温度下的扩散系数。
Copyright © 2022-现在 免责声明:网站中图片/文字等均来源于网络,如有版权问题请联系删除!
地址:深圳市罗湖区翠山路63号西湖工业区2栋4楼
电话:0755-82876856
邮箱:sales@etool.cc
备案号:粤ICP备12007139号